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INTRODUCTION

The dilution method is a means for estimating, without any direct count, the
density, A, of organisms in a liquid. The method consists in taking samples from
the liquid, incubating each sample in a suitable culture medium, and observing
whether any growth of organisms has taken place.

The probability model behind the dilution method is based on two main
assumptions: (i) the organisms are distributed randomly throughout the liquid
and (ii) each sample from the liquid when incubated in the culture medium is
certain to exhibit growth whenever the sample contains one or more organisms.

Any dilution may be represented by a dose variate, d, such that the demsity
in the dilution is Ad per unit volume. Usually, d will be less than unity but
values greater than unity (corresponding to concentrations of the original sus-
pension) can be treated with the same theory. Throughout this paper we shall
consider values of d between 0 and @ . It follows then from assumptions (i) and
(ii) stated in the first paragraph that the number of organisms per sample, in
samples of unit volume with dilution d, follows a Poisson distribution with mean
Ad.

Typically, samples of size Dyy...,m are taken from k preparations correspond-
ing to dilution levels dl""’dk' By sample size here we mean the number of plates
taken from each preparation to be examined for growth. Denote by Xigeoor Xy the
observed numbers of sterile plates corresponding to dilution levels dl""’dk'
Based on this information, the problem of (a) estimating the bacterial density
and (b) planning of the experiment have been copiously treated in the literature.
The writings on the subject, however, do not incorporate in a formal manner the
previous knowledge which the experimenter may have about the bacterial demnsity.

Thus I propose to investigate problems (a) and (b) using a Bayesian approach. In
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particular, I plan to organize the work as follows: (1) Bayes estimation of the

bacterial density for a given set of dilution levels dl""’d and sample sizes

k
Dyyeeeshy. (2) Design of the experiment and estimation of the bacterial demsity,
making use of the existing prior information about the bacterial density, so as

to minimize the expected value of an appropriate cost function.

As future work we plan to insert a discussion of the problems involved in the
choice of a prior distribution and cost functions appropriate for the problem under
consideration, However in this essay, in order to get some outright idea of the
type of algebra and results to be expected, we assume without further discussion
that (i) a gamma prior on A is adequate for a Bayesian analysis of the problenm,
(ii) the planning of the experiment concerns only the specification of the dilution
levels which minimize the Bayes risk corresponding to a quadratic loss function.
The cost of the observations is temporarily disregarded here and the sample size
is assumed to be fixed. A thorough treatment of problems (i) and (ii) for
different cost functions is to be included as part of the future plans.

Section I of this report deals with review of literature. Section II is
concerned with problem (1). 1In Section III, for the case often encountered of
successive experimentation, we discuss a method to estimate the parameter A and
design the experiment making use at each instance of all the available information
about the bacterial demnsity. Section IV deals with polygamma forms for expressions
in Sections II and III. It is hoped that this will help to simplify the computa-
tions and will assist in the development of numerical methods when needed. Future

plans are discussed in Section V.



SECTION I
REVIEW OF LITERATURE

For many years, bacteriologists have been using dilution methods to give some

idea of the number of organisms in the material examined. The problem of estimating

the bacterial density, A, from this type of quantal experiment has long interested
bacteriologists and statisticians, McCrady [11] and Greenwood and Yule [6]
introduced the "most probable number" method which turns out to be essentially

the maximum likelihood procedure. Fisher [5] indicated the method of maximm

likelihood and in particular considered the model with expectation

E(y) =1 -exp(-pa "), 0<y<1, p>0, a>0, (1.1)

with the values of w equally spaced at unit intervals. Halvorson and Ziegler [7]
have given tables from which the maximum likelihood estimate can be read directly
for certain assay designs. Finney [3,4] suggested that the maximum likelihood
estimate of A may be obtained by the same type of iterative process as that used
in probit analysis. Peto [12] gives tables to facilitate the solution of the
maximum likelihood equation and discusses the experimental verification of the
hypothesis.

The estimation of the bacterial density in dilution experiments has also been
approached from the point of view of Spearman estimation, Johnson and Brown (8]

have discussed the model with expectation

E(y)=1-e°d, 0<y<1, p>0 (1.2)
and with 4 = et for equally spaced values of t. The relationship between this
model and the one given by Fisher [5] is discussed by Cormell [2].

A Bayesian approach to the bioassay problem is discussed by Kraft and Van

Eeden [9]. The authors give a characterization of the class of all prior
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distributions, they find the corresponding Bayes estimates for a class of loss
functions and they show the completeness of the closure of this type of estimates
for a certain topology. A special case is given for which the estimates can be
explicitly computed. Thorslund {14] considers explicitly the dilution model,
imposes a natural conjugate prior on the quantity p = e-)"d and gives the first
two moments of -~ fn P in the form of polygamma functions.

The design problem, which consists of determining optimal (in some sense)
dilution levels, has been less copiously treated. From a consideration of the

”~
approximate variance of A with a single dilution level and sample size one,

Finney [4] recommends that d should be chosen so as to satisfy
1<Nd<2 (1.3)

Thus, if hL and Au are believed by the experimenter to be lower and upper bounds
respectively for the bacterial density A, the dilution level should be chosen so

as to satisfy

1l <4< & ) (1.4)

A M
Cochran [1] points out that this rule is satisfactory if a substantial number of
samples, say 20 or more, are being taken at each dilution level. With very small
numbers of samples per dilution, the rule (l.4) is not quite stringent enough, in

that it allows too much risk that all the samples may be fertile.




SECTION II

Bayes estimate of A with fixed sample sizes and dilution levels.

Let xl,...,xk be the number of sterile plates observed in samples of sizes

Nyyeee,ly corresponding to dilution levels dl""’dk’ respectively.

It is intended to find the Bayes estimate, A, of the bacterial density. We

assume that (i) a gamma prior distribution for the parameter A,

h
1 A
B Ag

g(d) = e , 0<A< , a>-1, B>0, .1)

reret!
is specified based on the experimenter's previous belief, (ii) a quadratic loss
function

Lo, = -2 (2.2)

is considered to be an adequate measure of regret for failure to estimate exactly
the parameter A.

It should be noted that the prior distribution g(A) is not a natural conjugate.
In fact, following Raiffa and Schlaifer [13], we observe that no procedure to
construct a natural conjugate prior is available in this case since the sufficient

statistic is (xl,...,xk) and it does not admit further reduction.

From a result in Lehmann [10, p. 23], the Bayes estimate of A, when a quadratic

loss function is used, is given by

- ]

; = j A p(A[x) dn, (2.3)
0

where p(k]x) is the posterior density of A.



To obtain p(A [x) we recall that

ale) - Az

j L(x[N)g(\)an
0

where £(x|\A) is the likelihood of the observation vector.

(2.4)

From the remarks made in the first paragraph of the Introduction, it follows

that

k /. -7\.dixi
2y = ] <X}> e (1
i=1 *

If we define

n,-x, ")Hc

~7

DkO\-, n,x,d,B,Y) =

$ = i = f -
i 0 i 0 ) (t‘ )
we can write

-Ad, 3“1 x5
1
-e .

/

k

+...+1 -\ d. 1+Zd X, }
IZ i3
Y

j=1

K |
Ly = ] Gi) D _(\,n,%,d,%,0) .
i=1

It is also convenient to define

nl—xl nk-xk 11+. .ot

Sk(n,x,d,B,Y) = y Z (-1)

-

il=0 1k=0

Then it can be shown that the posterior density of A, given x, is

ik

Dk(}\.,n,x,d, B,a)

P\ [x) =

I‘(a-l-l)Sk(n,x, d,B,a)

2.5)

(2.6)

2.7)

(2.8)

(2.9)



and the Bayes estimate of A is

Sk(n,x,d,ﬁ,a$2)
. (2.10)
Sk(n,x,d,B,a+l)

;» = (o+1)

The Bayes risk which is equal to

R(g,d) = f Ex(k-;:)z g(r) an , (2.11)
0
reduces to
2
! . {s (n,%,d,B a+2)]
a k . 'St
R(z,4) = (@2) @) g7 - EL° ) \Z (g . 2.12)

5) Sk(n,x,d,ﬁ,a+1)

=0 =0 i=}1
Xy X 0
The expressions obtained for the parameter estimate and the Bayes risk are
not easy to compute as it would be desirable for the results to have a practical
significance. As future work, we intend to consider asymptotic forms or

approximations in order to get the results into a useful form,




SECTION IIIX

Estimation and Design with Successive Experimentation.

The design of the typical dilution experiment involves the determination of
the following elements:
(i) Number of dilution levels: k

(ii) Actual dilution levels: d = (dl""’dk)

(iii) Humber of samples to be observed at each level: n = (nl,...,nk).

Thus the design of a dilution experiment can be represented with the notation:
e = (k,d,n). It is common laboratory practice to choose d according to a geometric
or logarithmic scaling. If we denote by di the ith dilution, by geometric scaling

we mean that di = a-(l-l), for i = 1,...,k and a > 0. The experiment can then be
represented by e = (k,a,n). By logarithmic scaling we mean that

w +(i-1)s
_ 0
d =e

i y fori=1,...,kand ~«<w, <o, >0, In this case the

O 2
experiment can be denoted by e = (k,wo,s,n).

It is our purpose to investigate in the future, for dissertation work, the
design of the experiment with respect to all the arguments involved in e, and we
intend to do this with a Bayesian approach in order to make use of all the available
information, subjective or experimental, in designing the experiment. If the
experimenter's subjective knowledge about the bacterial density, A, is represented
by a prior distribution, g(A), and if experimental data, x, from a previous
experiment, e, are available, we want to consider the problem of designing the
1

next experiment, e , if one is to be performed, so as to minimize the expected

cost associated with an appropriate cost function and incorporating g, x and e in

our design procedure.
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A treatment of the problem with such a generality will not be attempted here.
We shall limit ourselves to report the work which has been done in a simplified
version of the design problem which has been described above.
In what follows we assume that
a) a gamma prior distribution, as defined in (2.1), represents the
experimenter's convictions about X,
b) empirical information, x = (xl,...,xk), corresponding to a previous
experiment, e = (k,d,n), is available. The x's are assumed to be
independent.

¢) An experiment, e', is to be designed for which we assume:
(') k =1
(c") the sample size, n', is fixed
(c"') a quadratic loss function, as defined in (2.2) will be
used to compute the Bayes risk.
The aim will be to design an experiment, e' = (d'), choosing d’ so as to
minimize the Bayes risk: R(g,e,x,d‘). It is hoped that consideration of this
simplified case will throw light into the difficulties to be encountered in a

general treatment of the design problem.

1 ]
Let x be the number of sterile plates observed at dilution level d and

define
x = (xl,...,xk,x')
5= (n,...,a,0) (3.1)
d = (dl,...,dk,d') )



- 10 -

The Bayes risk will be given by

R(g,e,x,d') = f Ex.(h-;\) p(A|x) dA
0
o n‘ .
= J/ﬂb Z (h-)\)z £(x' 7S] p()\.!x) a |, (3.2)
0 x'=0

where p()s.’x) is given by (2.11),

1 1

£(x']}\) = (:r> e-)\d'x'(l_e~)\d1)n -x

! 1 $ 1
= (:‘) Dl()s,x sn ,d ,%,0) (3.3)

1) H 1
and Dl()\,x sn ,d ,2,0) is as defined in (2.6). To obtain the estimate, A, we

compute N
. f A PR o, 5t
0
where
p(A%T) = mz(LfK)p(hlx)

f 2x IVph]x)an (3.5)
0

If we substitute for p(}\‘x) expression (2.9) into (3.5) we have, since

1
Xireo- y¥, X are independent,

P(}\,Q = m'z(;p")g(k) . (3.6)
f LXK\ g )dn
0
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Comparing (3.6) with (2.4) we see that p(A|%) can be obtained directly from (2.9)
using X, © and d instead of X, n and d.

From (2.10) we have that

- s, ., (m,%,d,B,04+2)
N o= (1) L2777 ) (3.7)

— ——

Sk+1(n,x,d,5,a+l)

If we substitute in (3.2) for A, E(X'Ix) and p(A]x) expressions (3.7) and (2.9)

respectively we have that the expression for the Bayes risk reduces to

. S, (n,x,d,B,04+3) 2 .
R(g,e,x,d ) = (2 (a+1) L7277 - ) c@) (3.8)
Sk(nlx,d,ﬁ,a+1) Sk(n,x,d,a,a+l)
where

2

| a [SMI(E,E,E,a,mZ)]
C(@ ) = y <§> —= : (3.9)

x'_'—.'__o Sk+1 (0, X, d,B,0+1)

The experiment will be designed, with respect to the dilution level, if 5 is
found such that R(g,e,x,B') is a minimum. To prove the existence of a minimum we
note that R(g,e,x,d') as given in (3.8), depends on d' only through C(d‘). Further,
C(d') is always a positive quantity hecause the denominator of each term in the
sum (3.9) can be expressed as an integral whose integrand is always positive. 1In
particular we have

[+

— — — _1 -—— —
Sipy (M %,d,8,041) = I (a+1) fo D, (;n,x,d,8,0) dA, (3.10)

t
where Dk+16h,n,x,d,ﬂ,a) is as defined in (2.6). Thus C(d ) is positive and bounded
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4 t 1 4
for 0<d <w, C(d) is also a continuous function for 0 < d < =, Further, it

is easy to show that

oce 3

lim C(d) = (3.11)
d'naco ’/3

t
and by repeated use of L Hopital's rule and of an induction argument it can be

shown that

i

. ot
lim Cd)=# (3.12)
a’'~0 ﬁ

The above remarks, together with (3.11) and (3.12), imply that there exists some 5
for whicHFC(d') is a maximum, although this maximum may not be unique. Thus the
existence of some 5 for which the Bayes risk (3.8) is minimized has been established.

In order to find such a minimum I have utilized without success the conventional
calculus method of setting —§7 R(g,e,x,d') = 0, The resulting expression, however,
does not lead to an explicit solution for d'. Thus numerical methods should be
contemplated as part of our future work in order to obtain the value 8' which
minimizes R(g,e,x,d').

To obtain the estimate of A, once the observation s' has been taken at dilution
level 5', it will suffice to substitute 8 for d' in expression (3.7).

It appears clear that the methods described in this Section for the design
problem are no simpler than those of Section II. This fact imposes the need for
investigating ways to make the results useful from a practical standpoint. As a
means to this end we intend to consider asymptotic theory as a possible avenue to
simpler Bayes estimates and heunce to a simplification of the design problem. 1In
the next Section we show that, for integral values of the parameter &, it is possible
to express the Bayes estimates and Bayes risks obtained in Sections II and III in

the form of polygamma functions. It is hoped that this fact will assist in the

development of more tractable methods.
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If approximate methods can be successfully worked out, a comparison with the
existing non-Bayesian estimation and design procedures will be mandatory and is

to be considered an integral part of our future work.
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SECTION IV

Polygamma form for expressions in Sections II and III.

In this Section it will be shown that the Bayes estimate and the Bayes risk
resulting in Sections II and III can be expressed, for integral values of @, in
the form of polygamma functions. It is recognized that this restriction is
undesirable and we intend to continue to work in order to extend the results of
this Section to non-integral values of &. It will suffice to discuss the case
where one single dilution level is considered (k=1) in connection with the

expressions of Section II.

Note that, by factoring % from the numerator and denominator on (2.10) and
1

(2.12) and recalling the notation introduced in (2.8), we have that

-X
nl-x1 : (#11 1}
1> 17

(-1

] 1 o2
S _ o 1170 iy .1
i (M 1
), D i
i.=0
1 . 1 ot
SNSRI
2 ga+122
and R(g,d) = (x+2)(@+1) B~ - T A(dl) ’
=}
where n.-x %
1™ ) <“1 1>
11 i 2
. [ T (-1 1 ]
1 — . 1 062
g Y\ 1\ i,=0 [11+x1-0—53—1]
A = =553 1/ n -x -x (4.2)
) P s Wi B (“11 1>
! (-1) ' i o1
1,=0 (it teg ]
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Set k = + —lg and let m be a positive real number. Thus if we define
1
Q
(m) ,1\) = Z (__1) B —— » (4- 3)
i=0 (k+1)

we can write from (4.1) that

g(@+2)
~ _ (a"'l) nl-xl
AN = dl D) . (4.4)
Sn -X
171

Also, from (4.2)

- [ ZT
1 s (k)
N S 1 ____L__l____
A(dl) = (:: > . 4.5)

d‘f"3 ‘o 1 o+l
X1 s (k)
My

(m)

Next we shall show that if m is a positive integer the sum S (k) in (4.3) can be
written in the form of polygamma functions. This will be sufficient in order to
prove that the Bayes estimate and Bayes risk can be expressed as polygamma
functions if we assume that @ is a positive integer.

Consider the Beta integral

1
[t " ax - TRIGED (4.6)
0 I[ Ge+)

i=0

for k > 0. Note that (4.6) can also be integrated in the form

1 1 N @
f =Tl ax = Z -t (ID f £ gy =z(-1)’L kii . %7

0 i=0 0 i=0
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From (4.6) and (4.7) we have the equality

(1>(k) 2(1) <> N!

ey . (4.8)
i=0 J l (keti)
i=0

Differentiating equation (4.8) with respect to k, we get

) N
as k) (
s LI - »sPa 4.9)
dk ~ (k+1)
i=0
d s(l) (k)
i.e., (2)(1:) = (1) ——" (4.10)
ok

Thus we can obtain S ( )(k) by differentiating the right side of (4.8) with respect

to k. This yields

N
1
3 S(l)( ) z ki
aN = -npmE— (4.11)
« 11
(kti)
i=

@)y = s &

Sy “(k) =N! T . (4.12)
11 Geri)
i=0

Proceeding in a similar fashion we can obtain SISIB) (k).
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Note as before

2)
o Sy (k)

N (§>
. i
= (~2) g -0t

s = -2 Sé”(k) i (4.13)
dk i=0 (keti)
Hence, .
o ng)(k)
s}(f)(k) = (-1 % 2 (4.14)
k

(3)

and to get S

which gives

> (k) we differentiate with respect to k the right side of (4.12)

N }11. 2
Z 1 [ _1_]
+ -
d srgz)(k) ) (eri)? s leti
= (-1) §: £ = ] (4.15)
ok N
II e
i=0
Thus from (4.14) and (4.15) we have
il' N 2
1 1
+ —_—
el P
= (kti) . :
3 N! i=0 i=0
[] Ger)
i=0

(m)

We can find similar expressions for SN (k)

of the recursive relation

N

for other values of m by making use

3 s 1)

(m) _ 1
SN (k) = (-1) (m-1

) dk

. (4.17)
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Next we will show that the following result holds:

N

m-1
y L L GO [ ® gy v ® o | (4.18)
L . : ‘me-1ys J
1=0 (kti) (m-1): *©
where
m
v®ao = 4~ g rao (4.19)
m
dk
and
-]
T'(n) = u/‘, e X xn-1 dx , n>0 . (4.20)
0
{1 . . . (2) . . (3)
¥ (k) is called the Digamma function, ¥ ’ (k) the Trigamma function, ¥~ 7 (k) the
Tetragamma function and so on.
To show (4.18) we first note that
r(k) = —LCkHil) . %.21)

K(k+1) -« - (k+N)

Taking logarithm of both sides of (4.21), we have

Lu T(k) = fu P(HH1) - fu k - fu(k+l) - <+« - fu(kN) . (4.22)

Then taking the derivative with respect to k of both sides of (4,22), we obtain

d ,ngr‘(k) - v D = v @ ey - i. ﬁ'i - e - QI‘N‘ ) (4.23)
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Thus

N
Ay (1
§: o -V (ew) - ¥ (k) . (4.24)

i=0

'—l

Differentiating now both sides of (4.23) with respect to k and recalling the

definition (4.19), we have

(-1) Z = v Py - v P . (4.25)
(lc+1)
Hence !
|
N
Lo = ¢n! [\l,r(z)(k-i-N-l-l)-\v(z)(k)] : (4.26) |
imp CeH)

Thus (4.18) holds for m = 1,2. If we assume now (4.18) to be true for m and take

derivative with respect to k of both sides of (4.18), we have

N
m-1
(-m) y ( 1)m+1 - & )—, [w‘”l)(kfm1>—v(“’”)(k)}. . 27)
— k'*'i .
i=0
Thus
3 [ m
Z (;.)m—i-l - & [“’(ml)@”“*l)-‘!’(mﬂ) (k)] - (4.28)
i=0 *

Hence (4.18) holds true for m+ 1. Thus by the induction argument (4.18) holds

true for all m that are positive integers.

From (4.18), (4.21) and the forms displayed in (4.12) and (4.16) for the sums

2
Sé )(k) and SéB)(k), it becomes apparent that these forms can be expressed as a
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~

rational combination of polygamma functions. Hence the Bayes estimate A in 4.1)
and A(d1> in (4.2) can also be expressed in the form of polygamma functions for
integral values of Q.

It should be noted that tables for the Digamma, Trigamma, Tetragamma and

Pentagamma functions are available in the Handbook of Mathematical Functions

edited by the National Bureau of Standards. Another source is H. T. Davis,

Tables of Higher Mathematical Functions, Principia Press, Bloomington, Indiana.

Before concluding the Section we shall show that the following holds:

(m) (m-2) 61) (L
S - N: 0 (L) -y 77 (k)
1] Ge+i)
i=0
for integer values of m greater than one.
For m = 2 we have from (4.12) and (4.24) that
€9 (D)
s oy = jy LAEHDY @) (.30)
N
Il Gers)
i=0

Thus (4.29) holds for m = 2. 1f we mnext assume (4.29) to be true for m and take

the derivative with respect to k of both sides of (4.29), we have using (4.17) that

k1) () @D 1My WP
“m) Sy = (D" i D . (%.31)
k N
H (kc+i)
i=0

Thus (4.29) holds for m + 1. Hence by the induction argument, (4.29) holds true

for m = 2,3,... .
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SECTION V

FUTURE PLANS

Throughout the previous sections we have indicated which kind of extensions

are thought to be pertinent in order to complete a comprehensive Bayesina treat-

ment of the estimation and design problems involved in dilution experimentation.

In this Section we will summarize the suggestions which have been made thus far

and will point out other extensions which may be comtemplated in the future.

1.

The design problem will be investigated with respect to all the variables
involved in a typical dilution experiment: sample size, dilution levels
and number of dilution levels to be used. Special attention will be
given to the geometric and logarithmic dilution series described in
Section III,

With regard to cost functions, we plan to restrict outselves to what
Raiffa and Schlaifer [13] call additive cost functions. If we denote

a terminal act by a, we have that, for these functions,
cle,x,a,\) = Cs(e,x) + Ct(a,h) (5.1)

where Cs(e,x) is the sampling cost and Ct(a,h) is the terminal cost. In
particular we will assume that the sampling cost is a linear function of

the sample size,

Cs(e,x) =a+bn (5.2)
and that
Ct(a,'}\) =PX L(a,)\) P (5.3)

where p is a constant that brings Cs and Ct into a common "numeraire"

and L(a,\) is the loss function.
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Thus far, we have restricted our attention to a quadratic loss function

La,)) = O-n)? (5.4)

mostly because the Bayes estimate, A, is easily obtained as

o

~ n
A= ‘/ A p(A]x)dA . (5.5)
0

In future work we are planning to consider

L(a,\) = l;-xl (5.6)

~

for which A is given by the median of the posterior distribution of A.
(See Lehmann [10, p. 23]).
The classical problem of test of hypothesis can also be discussed within

this framework. Let Ho:h € QH and Hazx € Qk. Denote by a, the statement:

accept H . and by a, the statement: reject H Suppose that the following

0 1

cost or loss table is given

0.

H0 Ha
a5 0 ¢ (.7)
a1 02 0

where C1 and 02 are costs attached to a wrong decision. Then the design

problem can be dealt with in the same manner as with the other loss

functions discussed above, namely by minimizing the function

o

minf C(e,x,a,x) g()x) dA
0

C*(e) =E
xle a

with respect to the elements of e: sample size, dilution levels and

number of dilution levels.
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Tractable expressions for the Bayes estimate and Bayes risk will be sought.
It appears from the preliminary results obtained in Sections I1 and III
that in order to make this research useful from a practical standpoint

it is of paramount importance to obtain simpler expressions for the para-
meter estimate and hence for the Bayes risk involved in the design problem.
We intend to explore the possibilities which may exist in the polygamma
forms derived in Section IV and in this connection we will attempt to
extend the results of Section IV to the case where the parameter  of the
gamma prior distribution is not an integer value. Approximate forms for
the parameter estimate will also be considered as a possible source of
simplification for the estimation and design problems.

Tables to assist in the computation of the parameter estimate as well as
in the design of the experiment will be included as a part of future work.
The problem of how much effect the use of prior knowledge has on the
parameter estimate and on the design of the experiment will also be
considered. This is what Raiffa and Schlaiffer call Sensitivity Analysis.
The Bayesian approach suggested in this report for the estimation and
design problems in dilution experiments will be extended to other
biological assay models including models with the normal and logistic
distributions of tolerances. As a further step, an extension to a general
class of models, of which the above models would be particular cases, is
contemplated.

Examples to illustrate procedures and methods will be included.
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